Advanced Chemistry Syllabus

1. INTRODUCTION TO CHEMISTRY

- A) Why study Chemistry?
- B) Chemistry is...
- C) Scientific Method
- D) Measurement
 - 1. SI Units
 - 2. Prefixes
- E) Uncertainty
- F) Significant figures:
 - 1. Determining
 - 2. Rules
- G) Accuracy/Precision
- H) Mathematics and Scientific Notation Dimensional analysis
- I) Basic Concepts
 - 1. Element/Compound
 - 2. Fundamental Laws
 - 3. Substance/Mixture (Homogeneous/heterogeneous)

2. STRUCTURE AND NATURE OF MATTER

- A) Atomic structure and Atomic theory
 - 1. Historical development of the Periodic Table
 - 2. The organization of the Periodic Table
 - 3. The development of the atomic model
 - a. Historical development
 - b. The Electromagnetic Spectrum
 - c. Emission spectra and the Modern quantum atomic theory, orbital theory,
 - 4. Electron configurations
 - 5. The Periodic Table: Trends in affinities, electronegativities, ionization energies, Valence electrons
- B) Descriptive chemistry of groups of elements

3. NUCLEAR CHEMISTRY

- A) Nuclear binding forces
- B) Natural radioactivity:
- C) Artificial radioactivity
 - 1. Fission reactions/ reactors
 - 2. Fusion reactions
- D) Effects of radiation

4. STOICHIOMETRY

- A) Formulas/Nomenclature
 - 1. Oxidation numbers
 - 2. Solubility Rules
 - 3. Common Ions
 - 4. Chemical symbols, formulas and names
- B) Mass Relationships/Mathematical skills
 - 1. Calculating average atomic mass
 - 2. Molar mass and Avogadro's number
 - 3. Conversion Map
 - 4. Determining Percent composition
 - 5. Determining empirical formula from percent composition
 - 6. Determining a molecular formula from the empirical formula
- C) Balancing equations
- D) Stoichiometry
 - 1. The "Mole Method"
 - 2. Limiting Reactants
 - 3. Percent Yield

5. STOICHIOMETRY II: REACTIONS IN AQUEOUS SOLUTIONS

- A) Concentrations
- B) Precipitation reactions
 - 1. Complete molecular equations
 - 2. Complete ionic equations
 - 3. Net ionic equations
 - 4. Spectator ions
- C) Oxidation-reduction (redox)
 - 1. Types of redox reactions
 - 2. Metal activity series
 - 3. Balancing redox reactions
 - 4. The ion-electron method of balancing redox reactions
- D) Acid-base reactions
- E) Gravimetric analysis/ titrations
- F) Dilutions

6. STATES OF MATTER

- A) Gases; Kinetic Molecular Theory of Ideal Gases
 - 1. Pressure and pressure units
 - 2. Ideal gas laws
 - a. Boyle's Law
 - b. Charles' Law
 - c. Gay-Lussac's Law
 - d. Avogadro's Law and STP
 - e. Combined Gas Law

Advanced Chemistry Syllabus

- f. Ideal Gas Law
- g. Dalton's Law of partial pressure
- h. Grahams' Law of Effusion
- 3. Molecular speeds and root mean square velocities
- 4. Real gases: van der Waal's equation
- 5. Gas Stoichiometry
- B) Liquids and Solids
 - 1. Kinetic-Molecular Theory and Intermolecular Forces of Attraction
 - a. Temporary dipoles: London Dispersion Forces
 - b. Permanent Dipoles
 - c. Hydrogen Bonding
 - d. Properties of Liquids and colligative properties
 - 2. Vaporization and Vapor Pressure. Raoults Law
 - 3. Phase diagrams: triple points and critical points
 - 4. Structures of liquids and selected solids (crystals)
 - a. Ionic solids
 - b. Metallic Solids
 - c. Network Solids
 - d. Molecular Solids
 - i. Polar
 - ii. Non-polar

7. CHEMICAL BONDING

- A) Types of bonding:
 - 1. Lewis Dot Structures and the octet rule
 - 2. Ionic
 - 3. Covalent
 - 4. Formal Charge
- B) Modeling
 - 1. Resonance
 - 2. Exceptions to the octet rule
 - 3. Molecular Geometries and VSEPR
 - 4. Molecular Polarity
 - 5. Orbital hybridization, σ and π bonds

8. THERMODYNAMICS

- A) The Nature of Energy
- B) The 1st Law of Thermodynamics
 - 1. Internal Energy, work and heat
 - 2. Enthalpy
 - 3. Calorimetry
 - 4. Hess's Law

- 5. Heats of formation and determining heats of reaction
- C) The 2nd Law of Thermodynamics: Entropy
- D) Entropy, Free energy and spontaneity
- E) Bond enthalpies

9. KINETICS AND EQUILIBRIA

- A) Kinetics
 - 1. Collision Theory
 - 2. The Driving Forces behind reactions
 - 3. Reaction Rates
 - 4. Factors affecting Reaction Rates
 - 5. The Rate Law
 - a. Determining the rate law: Method of Initial rates
 - b. Graphical transformations of the Rate Law and the Order of reaction
 - 6. Energy of activation and the temperature dependence of the rate constant
 - 7. Reaction mechanisms and intermediates
 - 8. Catalysts
- B) Equilibria
 - 1. The Law of Mass Action and the Equilibrium constant (K_{eq})
 - 2. Quantitative Equilibrium
 - a) Determining K_{eq}
 - b) Determining the reaction quotient Q
 - c) Determining Equilibrium concentrations
 - 2. Qualitative Equilibrium: LeChâtelier's Principle

10. EQUILIBRIUM REACTIONS

- A) General Types of reactions (synthesis, decomposition, replacement, addition, subtraction)
- B) Acids and Bases
 - 1) Arhennius, Brönsted-Lowry, Lewis definitions
 - a. The autoionization of water and the Hydronium ion
 - b. The pH scale and indicators
 - c. Conjugate acid-base pairs
 - 2) Acid-Base equilibria
 - 3) Calculating pH
 - 4) Polyprotic acids
 - 5) Acid-Base properties of salts
 - 6) Structural Considerations of Acids
 - 7) Common ion effect
 - 8) Buffers
 - 9) Titrations

- C) Solubility Equilibria
 - 1) The common ion effect
 - 2) Precipitation and Quantitative analysis
 - 3) Classical qualitative analysis for metals by selective precipitation

11. REDOX AND ELECTROCHEMISTRY

- A) Oxidation number
- B) Voltaic cells,
- C) Electrochemistry
 - 1. Determining ξ^0_{cell}
 - 2. Determining ΔG^{o}_{cell}
- D) The Nernst equation
- E) Electrolysis

12. ORGANIC CHEMISTRY

- A) General physical and chemical characteristics
- B) Hydrocarbons and Functional Groups
- C) IUPAC nomenclature
- D) Isomerism
- E) Organic reactions
- F) Biochemistry: Basic groups