\qquad Period \qquad Date \qquad

Lab 14: Formula of a Hydrate

INTRODUCTION:

A hydrate is a compound with water molecules loosely associated with it. In naming, name the compound as usual adding a prefix + hydrate. An example would be $\mathrm{CaSO}_{4} \bullet 3 \mathrm{H}_{2} \mathrm{O}$. This compound would be called calcium sulfate trihydrate. $\mathrm{CaSO}_{4} \bullet 5 \mathrm{H}_{2} \mathrm{O}$ would be calcium sulfate pentahydrate. The \bullet symbol indicates there are that many water molecules attached to one molecule of the substance. In determining the molar mass, you need to include the mass of the water (s).

The water in a hydrated salt can be easily removed by heating the compound, thus making an anhydrous (without water) salt. You will determine the amount of water in the hydrated salt by weighing the compound before and after heating. You will convert the mass into moles and thus determine the molar ratio of water to anhydrous salt.
EQUIPMENT: Crucibles
MATERIALS: Hydrates of Iron (II) sulfate, copper (II) sulfate and sodium thiosulfate. PROCEDURE:

1) Weigh three clean and dry crucibles. Record the masses.
2) Add 2 g of each of the hydrates to a crucible. Record the masses.
3) Heat the crucibles on the hot plate for 5 minutes.
4) Allow the crucible to cool and re-weigh.
5) Repeat the heating until there is no change in the mass of the crucible + hydrate.

DATA:

	$\left(\mathrm{FeSO}_{4}\right)$	$\left(\mathrm{CuSO}_{4}\right)$	$\left(\mathrm{Na}_{2} \mathrm{~S}_{2} \mathrm{O}_{3}\right)$	Unknown
Mass empty:				
Mass with hydrate:				
Mass with anhydrous salt: $1^{\text {st }}$ heating				
Mass with anhydrous salt: $\quad 2^{\text {nd }}$ heating				
Mass of water				

\qquad Period \qquad Date \qquad

Moles of water				
Mass of anhydrous salt				
Moles of anhydrous salt				

QUESTIONS:

1) What is the formula of the hydrate in each known case?
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
2) Use the following sample data to determine the formula of $\mathrm{BeO} \bullet \mathrm{X}_{2} \mathrm{O}$.

Mass of hydrate $=8.61 \mathrm{~g}$
Mass of water $=3.60 \mathrm{~g}$
a) What is the mass of the anhydrous salt?
b) What is the formula of the hydrate?
c) What is the percentage composition of the hydrate? $\left(\% \mathrm{Be}, \% \mathrm{O}\right.$ and $\left.\% \mathrm{H}_{2} \mathrm{O}\right)$
3) Barium chloride is 14.74% water by weight. What is the formula for the hydrated salt?
\qquad
\qquad
\qquad
\qquad
\qquad Period \qquad Date \qquad

Lab 14: Formula of a Hydrate
4) What is the theoretical percentage of water in the following hydrates? Name the hydrates. i. $\quad \mathrm{NiCl}_{2} \bullet 6 \mathrm{H}_{2} \mathrm{O}$
ii. $\quad \mathrm{Ca}\left(\mathrm{NO}_{3}\right)_{2} \bullet 4 \mathrm{H}_{2} \mathrm{O}$
iii. $\quad \mathrm{ZnSO}_{4} \bullet 7 \mathrm{H}_{2} \mathrm{O}$
5) A hydrated compound is found to have a mass of 1.632 g before heating and a mass of 1.008 g after heating. What is the experimental percentage of water in this hydrate?
\qquad
\qquad
\qquad
6) An unknown salt: $\mathrm{MY} \bullet \mathrm{XH}_{2} \mathrm{O}$ Is 10.6% water. If "MY " has a molar mass of $150 \mathrm{~g} /$ mole, what is the value of X (in moles)

