$\Delta \mathrm{H}_{\mathrm{rxn}}^{\mathrm{o}}=\Sigma \mathrm{n}_{\mathrm{p} \text {-products }} \Delta \mathrm{H}_{\mathrm{f} \text {-products }}^{\mathrm{o}}-\quad \Sigma \mathrm{n}_{\text {reactants }} \Delta \mathrm{H}_{\mathrm{f} \text {-reactants }}^{\mathrm{o}}$
$=[2$ moles $(-46.19 \mathrm{~kJ} / \mathrm{mole}]-$
[1mole ($0 \mathrm{~kJ} / \mathrm{mole}$) $+3 \mathrm{moles}(0 \mathrm{~kJ} /$ mole $)$
$=-92.38 \mathrm{~kJ}$

The bond enthalpy method gives slightly more exothermic values, most likely due to the effect of averaging the $3 \mathrm{~N}-\mathrm{H}$ bonds.

9:1:A KINETICS:

Kinetics is the study of the rates, or speeds of chemical reactions. These rates can be nearly instantaneous (combustion reactions) or can take millions of years (formation of diamonds from graphite). The rate of reaction is not the same thing as the spontaneity of a reaction-spontaneity refers only to the energy requirement, that is, a spontaneous reaction requires no additional energy to proceed

COLLISION THEORY:

There are three basic concepts involved in the collision theory:

1) Atoms or molecules must physically collide in order for bonds to be formed.
2) The atoms or molecules must collide with sufficient energy to overcome the activation energy-the energy barrier to new bond formation.
3) The atoms or molecules must collide with a proper 3dimensional orientation-in other words, the appropriate portions of the atoms or molecules must be facing each other in the correct manner.

Reaction: Sufficient energy and proper orientation

No Reaction: Insufficient energy, correct orientation

No Reaction: Sufficient energy, incorrect orientation

No Reaction: Insufficient energy, incorrect orientation

THE DRIVING FORCES BEHIND REACTIONS

Whether or not a reaction takes place depends on the thermodynamics of the reaction. In general, nature tends to favor exothermic reactions $(-\Delta \mathrm{H})$ resulting in an increase in entropy $(+\Delta \mathrm{S})$. The spontaneity of a reaction is determined by the sign of the Gibb's free energy ($\Delta \mathrm{G}$) and must be negative. The relationship of these factors is given by the equation: $\Delta \mathrm{G}=\Delta \mathrm{H}-\mathrm{T} \Delta \mathrm{S}$

REACTION RATES

The rate of any reaction is defined as the change (usually in the molar concentration of the reactants or products) over time.

For a general reaction: $\quad a A+b B \rightarrow c C+d D$
The rate can be expressed either as the decrease in the concentration of A and B over time or the increase in the concentration of C and D over time. All these rates are equivalent. Average rate with respect to $\mathrm{A}=-1 / \mathrm{a}\left[\frac{\Delta[\mathrm{A}]}{\Delta \mathrm{t}}\right]$
=Average rate with respect to $\mathrm{B}=-1 / \mathrm{b}\left[\begin{array}{c}\frac{\Delta[\mathrm{B}]}{\Delta \mathrm{t}} \\ =\text { Average rate with respect to } \mathrm{C}= \\ \hline 1 / \mathrm{c}\left[\frac{\Delta[\mathrm{C}]}{\Delta \mathrm{t}}\right.\end{array}\right]$ $=$ Average rate with respect to $D=+1 / d\left[\frac{\Delta[D]}{\Delta t}\right]$

The concentrations can be plotted versus the time, and the instantaneous rate at any time " t " is the slope of the tangent to that point.
Figure 2

$>$ Example:

For the reaction $2 \mathrm{HI}(\mathrm{g}) \rightarrow \mathrm{H}_{2}(\mathrm{~g})+\mathrm{I}_{2}(\mathrm{~g})$

Rate $\quad=\frac{+\left[\mathrm{H}_{2}\right]}{\Delta \mathrm{t}}=\frac{+\left[\mathrm{I}_{2}\right]}{\Delta \mathrm{t}} \frac{-[\mathrm{HI}]}{(2) \Delta \mathrm{t}}$
The rate of decrease in the concentration if HI is equal to $1 / 2$ that of the rate of increase in either H_{2} or I_{2} because for every 2 moles of HI that decompose, 1 mole of both H_{2} and I_{2} are produced.

If the rate of the disappearance of HI is $6 \times 10^{-3} \mathrm{M} / \mathrm{sec}$, what is the rate of appearance of H_{2} and I_{2} ?

Since: The rate of decrease of $\mathrm{HI}=\frac{-[\mathrm{HI}]}{(2) \Delta \mathrm{t}}=\frac{+\left[\mathrm{H}_{2}\right]}{\Delta \mathrm{t}}$
$=6 \times 10^{-3} \mathrm{M} / \mathrm{sec}$ and this is $1 / 2$ the rate of the appearance of H_{2} and I_{2}, the rates for the increase in both products equals $2 \times 6 \times 10^{-3} \mathrm{M} / \mathrm{sec}$ $=1.2 \times 10^{-2} \mathrm{M} / \mathrm{sec}$.
> Example:

$$
4 \mathrm{NO}_{2}(\mathrm{~g})+\mathrm{O}_{2}(\mathrm{~g}) \quad \rightarrow \quad 2 \mathrm{~N}_{2} \mathrm{O}_{5}(\mathrm{~g})
$$

If the rate of the production of $\mathrm{N}_{2} \mathrm{O}_{5}$ is measured at
$5.6 \times 10^{-6} \mathrm{M} / \mathrm{sec}$, what is the rate of the disappearance of NO_{2} ?
Of O_{2} ?
Rate=
$+1 / 2\left[\frac{\left[\mathrm{~N}_{2} \mathrm{O}_{5}\right]}{\Delta \mathrm{t}}\right]=-1 / 4\left[\frac{\left[\mathrm{NO}_{2}\right]}{\Delta \mathrm{t}}\right]=-\left[\frac{\left[\mathrm{O}_{2}\right]}{\Delta \mathrm{t}}\right]$
$=5.6 \times 10^{-6} \mathrm{M} / \mathrm{sec}$
Solving for each rate, the rate of disappearance of NO_{2} is then $4 / 2$ or twice that of $\mathrm{N}_{2} \mathrm{O}_{5}=1.12 \times 10^{-5} \mathrm{M} / \mathrm{sec}$. The rate of disappearance of O_{2} is $1 / 2$ that of the appearance of $\mathrm{N}_{2} \mathrm{O}_{5}$ and $=2.8 \times 10^{-6} \mathrm{M} / \mathrm{sec}$.

