5:6:A

Acid-base reactions

ACIDS	BASES
Sour taste	Bitter taste
Color changes in plant-based pH indicators; Acid turns litmus red	Color changes in plant-based pH indicators; Base turns litmus blue
Acids burn exposed skin: severity depends on the concentration (Molarity) of the acid	Bases feel slippery. May cause some burning and irritation.
Acids react with metals above Hydrogen in the Activity series to produce a metal salt and H_2 gas	
Acids react with carbonates and bicarbonates to produce salts and $CO_2(g)$	
Acids are electrolytes and conduct electricity	Bases are electrolytes and conduct electricity.
Arrhenius acids: dissociate in aqueous solutions to produce H^+	Arrhenius bases: dissociate in aqueous solutions to produce OH ⁻
Brønsted-Lowry Acid: A proton (H^+) donor	Brønsted-LowryBase: A proton (H^+) acceptor

5:6:B Acid dissociations: Monoprotic: $HCl(aq) \rightleftharpoons H^+ (aq) + Cl^-(aq)$ H^+ may be written in aqueous media as the hydronium ion: H_3O^+ $CH_3COOH (aq) \rightleftharpoons H^+ (aq) + CH_3COO^- (aq)$ $HNO_3 (aq) \rightleftharpoons H^+ (aq) + NO_3^- (aq)$

Diprotic: (two step dissociation) $H_2SO_4(aq) \rightleftharpoons H^+(aq) + HSO_4^-(aq)$ $HSO_4^-(aq) \rightleftharpoons H^+(aq) + SO_4^{-2}(aq)$

Triprotic (three step dissociation) $H_3PO_4(aq) \rightleftharpoons H^+(aq) + H_2PO_4^-(aq)$ $H_2PO_4^-(aq) \rightleftharpoons H^+(aq) + HPO_4^{2-}(aq)$ $HPO_4^{2-}(aq) \rightleftharpoons H^+(aq) + PO_4^{3-}(aq)$

Base dissociations: Monobasic: NaOH(aq) \Rightarrow Na+(aq) + OH⁻(aq) Dibasic: Ba (OH)₂ \Rightarrow Ba²⁺(aq)+ 2OH⁻(aq)

5:6:C ELECTROLYTES:

An electrolyte is a substance that when dissolved in water conducts electricity.

Strong Electrolytes	Weak Electrolytes
HCl, HNO ₃ , H ₂ SO ₄ , NaOH, Ba(OH) ₂ , any ionic compound	H ₃ CCOOH (acetic acid), any haloacid except HCl, NH ₃ (ammonia), H ₂ O
**Non-electrolytes: Any	
covalently bonded compounds	

A reaction between an acid and a base is a neutralization reaction and always produces a salt and water. Since a salt consists of a cation other than H^+ and an anion other than OH^- , a salt is always an ionic compound and will dissociate to produce ions.

```
HCl(aq) + NaOH(aq) \rightarrow NaCl(aq) + H_2O(1)
                   [Molecular equation]
H^{+}(aq)+Cl^{-}(aq)+Na^{+}(aq)+OH^{-}(aq)\rightarrow Na^{+}(aq)+Cl^{-}(aq)+
                                                                        H_2O(1)
                [Complete ionic equation]
H^+(aq) + OH^-(aq) \rightarrow H_2O(1)
[Net ionic equation]
Na^+ and Cl^- are spectator ions.
```

5:7:A GRAVIMETRIC ANALYSIS/ TITRATIONS

Gravimetric analysis is a technique based on the measurement of mass.

A 0.7889 g mass of an unknown ionic compound is dissolved in water. The unknown compound is known to contain bromide ions. An excess of $AgNO_3(aq)$ is added in order to precipitate the chloride ions as AgBr. If 1.1211 g of precipitate forms, what is the percent by mass of the Br in the original compound?

1.1211 g AgBr @187.80 g/mole = 5.9696×10^{-3} mole AgBr 5.9696 x 10^{-3} mole AgBr x $\frac{1 \text{ mole Br}}{1 \text{ mole AgBr}}$ = 5.9696×10^{-3} mole Br 5.9696 x 10^{-3} mole Br @ 79.90 g/mole= 0.477 g Br Mass Percent Br = $\frac{0.477 \text{ g Br}}{1.1211 \text{ g sample}} \times 100\% = 42.55 \%$