Lesson 4-5.2 Sky Coordinates

-Sky Coordinates are like coordinates on the earth. -Longitude and latitude tell you your location on the earth.
-Both are angles, measured with the center of the earth as the vertex.

Lesson 4-5.3 Declination

-Sky latitude

- Measured in standard degrees, minutes, and seconds
-Written with these symbols
-Degrees ${ }^{\circ}$
-Minutes '
- Seconds "
-Example: $42^{\circ} 13^{\prime} 22^{\prime \prime}$

Lesson 4-5.4 Degrees

-360 degrees in a circle - 60 minutes in a degree -60 seconds in a minute

Lesson 4-5.5 and 4-5.6 Declination

-Zero is aligned with the celestial equator
-Positive values are North
-Negative values are South

- 90 degrees N is the North Celestial Pole (near Polaris)

Lesson 4-5.7 Right Ascension

- Sky longitude
- Measures East and West Position
- Needs a zero location
- First point of Aries
- Vernal Equinox
- 0 Right Ascension
- Analogous to Greenwich $=0$ degrees long.

Lesson 4-5.8 and 4-5.9 Vernal Equinox

-Location where the ecliptic crosses the celestial equator, heading north
-Position of the sun on 21 March
-First day of Spring

Lesson 4-5.10a RA coordinates

- Since the sky takes 24 hours to rotate, RA is measured in hours.
- Because everything rises in the east and sets in the west, sky coordinates increase to the left while facing south.
- This is because if you stare in a fixed direction, objects to your left will move into your field of view later, so their RA must be "later."

Lesson 4-5.10b RA coordinates

- There are 24 hours in a day
- Therefore 24 h of RA in a circle
- RA hours are subdivided into minutes and seconds
- Symbols are different than for degrees
- Example: 22 h 34 min 16 sec

Lesson 4-5.10c RA Coordinates

- RA minutes and seconds are not the same size as ' and" for degrees.
- At the celestial equator, 1 RA minute is 15 times larger than 1 ' of arc.
- RA minutes vary in angular size depending on the declination
- Declination minutes are always the same size

Lesson 4-5.13 Useful tip

- The RA of an object on the meridian (due south) is the sidereal time.
- If an object with an RA of 15 h is on the meridian, the local sidereal time is 15 hours.
- The hour angle of an object is how many hours of RA it is from the meridian.
- HA = RA (object) - LST (local sidereal time)

