$\qquad$
$\qquad$
$\qquad$

## 2:28 Summary of Integration and Differentiation (M-22)

1. A pure exponential function is identical to its own derivative.

If $y=e^{x}$ then $d y / d x=$ $\qquad$ and $\int y d x=$ $\qquad$ +C ,
where "C" can have any constant value.
2. Differentiating a pure sinusoidal curve shifts it by $\qquad$ cycle to the $\qquad$ . If $y=\sin x$ then $d y / d x=$ $\qquad$ .

Integrating a sinusoidal function shifts it by $\qquad$ cycle to the $\qquad$ .
If $\mathrm{Y}=$ $\qquad$ then $\int Y d x=\sin x+C$.
3. Differentiating a polynomial term causes its exponent to $\qquad$ crease by $\qquad$ and causes its coefficient to be $\qquad$ by the $\qquad$ . If $y=k x^{n}$ then $d y / d x=$ $\qquad$ .
4. Integration is the $\qquad$ of differentiation. Integrating a polynomial term causes its exponent to $\qquad$ crease by $\qquad$ and causes its coefficient to be $\qquad$ by the $\qquad$ .

For example, if $\mathrm{y}=\mathrm{kx}^{\mathrm{n}}$ then $\int \mathrm{ydx}=$ $\qquad$ +C .
5. "Nested" functions can be differentiated with the chain rule:

$$
\text { If } y=f[g(x)] \text { then } d y / d x=(d f / d g)(d g / d x)
$$

For example, if $y=A e^{k x}$ then $d y / d x=$ $\qquad$ .

Differentiating a generalized exponential causes its coefficient to be multiplied by the $\qquad$ factor in its exponent. (variable, constant)
6. Integrating a generalized exponential function causes its coefficient to be $\qquad$ by the $\qquad$ factor in its exponent:
For example, if $y=A e^{k x}$ then $\int y d x=$ $\qquad$ +C .
7. If $\mathrm{y}=\mathrm{A} \sin \omega \mathrm{t}$ then (using the chain rule)
$d y / d t=$ $\qquad$ and $\int y d x=$ $\qquad$ $+\mathrm{C}$.

If $y=A \cos \omega t$ then $\int y d x=$ $\qquad$ +C , and $\mathrm{dy} / \mathrm{dt}=$ $\qquad$ .
8. Product rule:

If $f$ and $g$ are two functions of $x$, and $f^{\prime}$ and $g^{\prime}$ are their derivatives, then the derivative of their product is $\qquad$ .

