2nd Grade Syllabus

- I. I Can Be A Scientist
 - a. What is a scientist? Finding out what students already know
 - b. Scientists make predictions and solve problems
 - i. Using patterns to make predictions
 - ii. Estimation
 - iii. Test a scientific prediction
 - c. Scientists use special tool
 - i. Use a hand lens to observe and describe the physical properties of an object
 - ii. Use a microscope to observe and describe the physical properties of an object
 - iii. Use of a thermometer to measure hot, room temperature and ice water
 - iv. Are big things always heavier? Using a scale to check predictions
 - v. Classify objects by physical properties
 - d. Scientists observe and measure change
 - i. Sun and shade plant experiment
 - ii. Predict and record changes in the living plant over time
 - e. Famous scientists
 - i. Read biographies of famous scientists
 - ii. Create poster presentation about a scientist
 - iii. Compare scientist lives and accomplishments
 - iv. Chart the areas of science covered by the scientists
 - v. Writing: How would our life be different without one invention
 - f. Assessment: What does a scientist do?
- II. Meet an Insect or Two
 - a. Who studies insects and what tools would they use?
 - b. Sort and categorize pictures of living and nonliving things
 - c. Identify the parts of an insect
 - i. Sort pictures
 - ii. Use a hand lens to observe insects and find common body parts
 - iii. What makes insects alike?
 - iv. Build an insect and illustrate its habitat
 - v. Assessment: label the parts
 - d. Observation of living insects
 - i. Record the stages of development of a butterfly
 - ii. Observe what an insect needs to survive
 - iii. Assessment: Draw the lifecycle of a butterfly
 - e. Insects are alike and different

2nd Grade Science Syllabus

- i. Compare pictures of butterflies to notice things that are alike and things that are different
- ii. Heredity of traits: Things of the same species are alike
- f. Where do insects come from?
 - i. Fossil evidence of insects from long ago
 - ii. Living things reproduce more of their own kind
 - iii. Environment influences growth of insects
- g. Assessment: Design an insect, label its parts, create its habitat, write about how it grows and changes during its life cycle
- III. The Very Important Sun and Its Energy
 - a. Who studies the sun and the sky and what tools would they use?
 - b. What is light? What do we know about light?
 - i. Light sources
 - ii. Light travels in straight lines
 - iii. Light can pass through some objects
 - iv. Light creates shadows
 - c. The moving earth
 - i. Why outdoor shadows move and change
 - ii. The earth's spinning gives us day and night
 - iii. The earth moves around the sun and gives us seasons
 - iv. Winter solstice myths of the past
 - d. What is the sun?
 - i. Understanding the sun video
 - ii. The sun is the closest star to earth
 - iii. The sun gives us heat and light energy
 - iv. Measuring the sun's heat energy in sun and shade
 - e. What else is in our sky?
 - i. An overview of the planets research project
 - ii. What is a moon and who has one or more?
 - iii. Assessment: definitions of sun, moon and planets
 - f. Energy from the sun
 - i. Definition and energy video
 - ii. What do we get from the sun's light and heat energy?
 - iii. Plants need the sun's energy
 - iv. The food chain passes the sun's energy to us
 - g. Energy from other sources
 - i. What makes things work a comparison of things and their energy source
 - ii. Build a pinwheel
 - iii. Build a waterwheel
 - h. Final assessment: Why couldn't we survive without the sun?

2nd Grade Science Syllabus

- IV. Movement, Force, Energy and Work
 - a. Who studies physical properties of objects and what tools would they use?
 - b. It takes work to move an object
 - i. Move a round and a rectangular object and describe the ways it can be done
 - ii. Ramps, rolling and nonrolling objects
 - iii. Force: the power to move an object
 - iv. Tools to make movement easier: pulleys, levers, wheels and ramps
 - v. Design a movement system for a small object
 - c. Objects at rest
 - i. Balancing our bodies
 - ii. Balance an object on a finger
 - iii. Balance an object on a Popsicle stick
 - d. Changing the movement of an object
 - i. Spinning tops
 - ii. Rolling wheels
 - e. Final Assessment:
 - i. Build a system that includes balance, force and a change in direction
 - ii. Written assessment
- V. The Ocean: A Place of Wonder and Excitement
 - a. What do we know about the ocean?
 - b. Create an ocean habitat bulletin board
 - c. Who studies the ocean and what tools would they use?
 - d. Characteristics of sea creatures
 - i. What is a fish?
 - 1. Read about fish
 - 2. Label the parts of the fish
 - 3. Add fish to the bulletin board
 - ii. What is a mollusk?
 - 1. Read about mollusks
 - 2. Label the parts of the mollusk
 - 3. Add mollusks to the bulletin board
 - iii. What is a crustacean?
 - 1. Read about crustaceans
 - 2. Label the parts of the crustacean
 - 3. Add crustaceans to the bulletin board
 - iv. What is a mammal?
 - 1. Read about sea mammals
 - 2. Label the parts of the sea mammal
 - 3. Add sea mammals to the bulletin board
 - v. How are animals of the same species alike and different?
 - vi. How are animals of different species alike and different?

2nd Grade Science Syllabus

- e. The ocean's food chain
 - i. What do fish, mollusks, crustaceans and mammals eat?
 - ii. Where do sea creatures get their energy?
 - iii. Create an ocean food chain
 - iv. What happens if one part of the food chain disappears?
- f. Protection of the environment
 - i. Pollution experiment
 - ii. Oil in water
 - iii. Effects of pollution on the ocean environment
 - iv. What can we do to save our ocean? Try a service project

VI. Final Assessment

- a. Write a book: If I Were a Scientist
 - i. What area would I study
 - ii. What tools would I need
 - iii. What problem would I work on
 - iv. How would I design my experiment