Unit 8 Lesson 1: Inverses, Inverse Sine \& Compositions

Inverse Sine Function:

Opening Activity - Review Inverse Functions

Find the inverse of the following linear function:
Remember that domains and ranges switch from an original relation/function to its inverse (x and y switch).
Also remember from Unit 5 that inverse relations/functions are symmetric over the line $\mathrm{y}=\mathrm{x}$.

$$
y=f(x)=\frac{4 x-1}{3}
$$

Method 1:

$$
\begin{aligned}
& y=f(x)=\frac{4 x-1}{3} \\
& \downarrow \bullet 4 \quad \uparrow \div 4 \Rightarrow \frac{3 \mathrm{x}+1}{4} \quad \therefore \mathrm{f}^{-1}(x)=\frac{3 \mathrm{x}+1}{4} \\
& \downarrow-1 \quad \uparrow+1 \Rightarrow 3 \mathrm{x}+1 \\
& \downarrow \div 3 \quad \uparrow \bullet 3 \Rightarrow 3 \mathrm{x}
\end{aligned}
$$

Method 2:

$$
\begin{aligned}
& y=\frac{4 x-1}{3} \Rightarrow \text { Switch } \mathrm{y} \text { with } \mathrm{x} \text { and solve for } \mathrm{y} \\
& x=\frac{4 y-1}{3} \Rightarrow 3 x=4 y-1 \Rightarrow 4 y=3 x+1 \Rightarrow y^{-1}=\frac{3 x+1}{4}
\end{aligned}
$$

Observe the calculator graph of the linear function and its inverse function below:

The middle line is the graph

$$
f(x)=x \rightarrow y=x .
$$

Trigonometry © by Jay Yohe, published by TEACHINGpoint as part of the Expert Systems for Teachers ${ }^{\text {TM }}$ Series

Unit 8 Lesson 1: Inverses, Inverse Sine \& Compositions

Find $\left(f \circ f^{-1}\right)(x)$ and $\left(f^{-1} \circ f\right)(x)$ for the sample problem:

$$
\begin{aligned}
& \left(f \circ f^{-1}\right)(x)=\frac{4\left(\frac{3 x+1}{4}\right)-1}{3}=x \\
& \left(f^{-1} \circ f\right)(x)=\frac{3\left(\frac{4 x-1}{3}\right)+1}{4}=x
\end{aligned}
$$

Inverse Sine:

Graph the sine function on your graphics calculator using the range -2π to 2π

Is it a function?
Answer: Yes, because it passes the vertical line test and one element in the domain does not map to more than one element in the range.

Is it a one-to-one function?
Answer: No, because it fails the horizontal line test and its inverse is not a function.

Could we restrict the domain of the sine function to form a region that is one-to-one?

Unit 8 Lesson 1: Inverses, Inverse Sine \& Compositions

Observe various correct choices:

What is the restricted region closest to the origin (yet avoids as many negative values as possible) that allows the inverse to become a function?
Try starting at the origin:

If you start at the origin, the section formed fails the horizontal line test and is not a function!

Inverse Sine is defined as follows:

The best way to confine the sine function (that is closest to the origin) is between

$$
\frac{-\pi}{2} \text { and } \frac{\pi}{2} .
$$

Therefore:

$$
y=\sin ^{-1} x \text { or } y=\operatorname{Arcsin}(x) \text { iff } \sin y=x \text { and } \frac{-\pi}{2} \leq y \leq \frac{\pi}{2} \text { and }-1 \leq \mathrm{x} \leq 1
$$

Unit 8 Lesson 1: Inverses, Inverse Sine \& Compositions

Observe the graph of sine, inverse sine and $\mathrm{y}=\mathrm{x}$:

Refer to "Handout Unit - 8 Lesson 1".

Arcsin Exact Values:

Trigonometry © by Jay Yohe, published by TEACHINGpoint as part of the Expert Systems for Teachers ${ }^{\text {TM }}$ Series

