Unit 10 Lesson 1: Polar Coordinate System

Polar Coordinate System:

Polar Coordinate System - is an alternate system of graphing that differs from the rectangular system for plotting points in a plane. The polar system consists of a pole and a ray with the vertex at the pole and a fixed ray $\overrightarrow{O A}$ (called the polar axis). See the diagram below. The pole is similar to the origin of the rectangular system and the polar axis is similar to the x -axis of the rectangular system. The ordered pair (r , θ) is used to define the Polar Coordinates of point P. The directed distance from the pole to point P is called r and the measure of the angle from the polar axis to point P is θ. The coordinates of the pole are $(0, \theta)$ for any real value of θ measured in degrees or radians. Both r and θ can be positive or negative.

Observe the following definitions:

(r, θ) - Polar Coordinates
Point O - pole (origin)
$\overrightarrow{O A}$-- polar axis
r - distance from the pole to point P
θ - is the angle formed by the polar axis and the ray from the pole to point P
(x, y) - Rectangular Coordinates
When r is positive, the polar distance is measured from point O along the terminal side of angle θ (counterclockwise).
When r is negative, the polar distance is measured from point O along a ray opposite of the terminal side of angle θ (clockwise).

Trigonometry © by Jay Yohe, published by TEACHINGpoint as part of the Expert Systems for Teachers ${ }^{\text {TM }}$ Series

Unit 10 Lesson 1: Polar Coordinate System

Example 1:

Graph each point on the r θ-plane:

$$
U\left(3, \frac{\pi}{4}\right), \mathrm{V}\left(3, \frac{9 \pi}{4}\right), \mathrm{W}\left(3, \frac{-\pi}{4}\right), \mathrm{X}\left(-3, \frac{\pi}{4}\right) \text { and } \mathrm{Y}\left(-3, \frac{-\pi}{4}\right)
$$

U and V :

W:

Trigonometry © by Jay Yohe, published by TEACHINGpoint as part of the Expert Systems for Teachers ${ }^{\text {TM }}$ Series

Unit 10 Lesson 1: Polar Coordinate System

X:

Y:

Notice that points can be represented more than one way in polar form!
In general, the following can be used to plot points on the polar coordinate system:
(r, θ)

- $(\mathrm{r}, \theta+2 \mathrm{k} \pi) \rightarrow \mathrm{k}$ is any integer
- ($-\mathrm{r}, \theta+\pi+2 \mathrm{k} \pi) \rightarrow \mathrm{k}$ is any integer

Unit 10 Lesson 1: Polar Coordinate System

Example 2:

Plot the point $P\left(2, \frac{5 \pi}{6}\right)$ and find four other pairs of polar coordinates to represent the same point.

Other Representations:

$$
P\left(-2, \frac{11 \pi}{6}\right)=P\left(-2, \frac{23 \pi}{6}\right)=P\left(2, \frac{17 \pi}{6}\right)=P\left(2, \frac{-7 \pi}{6}\right)
$$

