Unit 10 Lesson 1: Polar Coordinate System

Polar Coordinate System:

Polar Coordinate System – is an alternate system of graphing that differs from the rectangular system for plotting points in a plane. The polar system consists of a pole and a ray with the vertex at the pole and a fixed ray \overrightarrow{OA} (called the polar axis). See the diagram below. The pole is similar to the origin of the rectangular system and the polar axis is similar to the x-axis of the rectangular system. The ordered pair (r, θ) is used to define the Polar Coordinates of point P. The directed distance from the pole to point P is called r and the measure of the angle from the polar axis to point P is θ . The coordinates of the pole are (0, θ) for any real value of θ measured in degrees or radians. Both r and θ can be positive or negative.

Observe the following definitions:

 (r, θ) – Polar Coordinates Point O – pole (origin) \overrightarrow{OA} -- polar axis r – distance from the pole to point P θ – is the angle formed by the polar axis and the ray from the pole to point P (x, y) – Rectangular Coordinates

When r is positive, the polar distance is measured from point O along the terminal side of angle θ (counterclockwise).

When r is negative, the polar distance is measured from point O along a ray opposite of the terminal side of angle θ (clockwise).

Trigonometry © by Jay Yohe, published by TEACHINGpoint as part of the Expert Systems for Teachers™ Series

Unit 10 Lesson 1: Polar Coordinate System

Example 1:

Graph each point on the $r\theta$ -plane:

$$U\left(3,\frac{\pi}{4}\right)$$
, $V\left(3,\frac{9\pi}{4}\right)$, $W\left(3,\frac{-\pi}{4}\right)$, $X\left(-3,\frac{\pi}{4}\right)$ and $Y\left(-3,\frac{-\pi}{4}\right)$

W:

Trigonometry © by Jay Yohe, published by TEACHINGpoint as part of the Expert Systems for Teachers™ Series

Unit 10 Lesson 1: Polar Coordinate System

Y:

Notice that points can be represented more than one way in polar form! In general, the following can be used to plot points on the polar coordinate system:

(r, θ)

- $(r, \theta+2k\pi) \rightarrow k$ is any integer
- $(-r, \theta + \pi + 2k\pi) \rightarrow k$ is any integer

Unit 10 Lesson 1: Polar Coordinate System

Example 2:

Plot the point $P\left(2,\frac{5\pi}{6}\right)$ and find four other pairs of polar coordinates to represent the same point. 5 P(2, 150°) π 6 5 5 ÷

Other Representations:

$$P\left(-2,\frac{11\pi}{6}\right) = P\left(-2,\frac{23\pi}{6}\right) = P\left(2,\frac{17\pi}{6}\right) = P\left(2,\frac{-7\pi}{6}\right)$$

Trigonometry © by Jay Yohe, published by TEACHINGpoint as part of the Expert Systems for Teachers™ Series