5.1 Radicals and Rational Exponents

□ <u>Objectives:</u>

•

- Define and apply rational and irrational exponents.
- Simplify expressions containing radicals or rational exponents.

□ <u>5.1a</u> nth Roots

- Recall: when c > 0, the square root of c is ______
- Depending on whether n is even or odd and whether c is positive or negative, xⁿ = c may have _____.

Pre-Calculus by Brian Reeves © 2003, published by TEACHINGpoint as part of the Expert Systems for Teachers™ Series

Print Name	Period	Date

- Let c be a real number and n a positive integer. The nth root of c is denoted by either of the symbols and is defined to be:
 - The solution of ______
 - The nonnegative solution of ______
- Examples: Operations on roots

• Examples: Evaluating nth roots with calculators

- Caution: When using exponent notation to evaluate nth roots with a calculator, be sure to use ______
- **5.1b** Rational Exponents
 - Rational exponents of the form 1/n are called nth roots.
 - Rational exponents can also be of the form ______
 - •
 - Definition of rational exponents:

c^{m/n} is defined to be the number _____

or in radical notation:

5.1c Laws of Exponents

- ٠ Let c and d be nonnegative real numbers and let m and n be rational numbers:
 - 1. .
 - 2. .
 - 3.
 - **4**.
 - 5.
 - 6.

If c and d are not equal to 1, then

- $c^m = c^n$ if m = n
- c^m = d^m if c = d
- Examples: Simplifying expressions with rational exponents ٠

5.1d Rationalizing the Denominator

When rationalizing a denominator which contains an expression, a ٠ suitable radical fraction with a value of 1 is

Examples: Rationalizing the denominator ٠

□ <u>5.1e Irrational Exponents</u>

Examples: •

The laws of exponents are valid for _____ ٠