\qquad
\qquad Date \qquad

5.1 Radicals and Rational Exponents

- Objectives:
- Define and apply rational and irrational exponents.
- Simplify expressions containing radicals or rational exponents.
$\square \quad$ 5.1a nth Roots
- Recall: when $c>0$, the square root of c is \qquad
-
- Depending on whether n is even or odd and whether c is positive or negative, $x^{n}=c$ may have \qquad .

n even

$c=0$

$c<0$

\qquad Period \qquad Date \qquad
- Let c be a real number and n a positive integer. The nth root of c is denoted by either of the symbols and is defined to be:
- The solution of \qquad
- The nonnegative solution of \qquad
- Examples: Operations on roots
- Examples: Evaluating nth roots with calculators
- Caution: When using exponent notation to evaluate nth roots with a calculator, be sure to use \qquad
-

- 5.1b Rational Exponents

- Rational exponents of the form $1 / n$ are called nth roots.
- Rational exponents can also be of the form \qquad
-
- Definition of rational exponents:
$\mathrm{c}^{\mathrm{m} / n}$ is defined to be the number \qquad
or in radical notation: \qquad
\qquad Period \qquad Date \qquad

5.1c Laws of Exponents

- Let c and d be nonnegative real numbers and let m and n be rational numbers:
- 1.
- 2.
- 3.
- 4.
- 5.
- 6.

If c and d are not equal to 1 , then

- $\quad c^{m}=c^{n}$ if $m=n$
- $\quad c^{m}=d^{m}$ if $c=d$
- Examples: Simplifying expressions with rational exponents

- 5.1d Rationalizing the Denominator

- When rationalizing a denominator which contains an expression, a suitable radical fraction with a value of 1 is
\qquad
- Examples: Rationalizing the denominator
[5.1e Irrational Exponents
- Examples:
- The laws of exponents are valid for \qquad

