Unit 6:1a Right-Angled Trigonometry – Tangent Ratio

a) Complete the table by measuring the angle and the lengths AB and BC in each of the right-angled triangles below. For each angle, calculate the tangent ratio by dividing BC by AB. Round these answers to 1 decimal place.

Angle A°	10	20	30	40	50	60	70	80
AB (mm)								
BC (mm)								
$tanA^{\circ} = \frac{BC}{AB}$								

Unit 6:1a Right-Angled Trigonometry – Tangent Ratio

b) What is the value of the tangent ratio for 45°? Check by drawing a diagram.

Answer:

c) What is the value of the tangent ratio for 90°? Try to explain why.

Answer:

d) Using your values in the table, draw a graph of the tangent function for the domain $0^{\circ} \le x^{\circ} \le 90^{\circ}$

e) Check the shape of the tangent function on your GDC.

Unit 6:1b Right-Angled Trigonometry – Tangent Ratio

For all the questions in this exercise;

- If answers are not exact then round any lengths to 3 significant figures, and any angles to 1 decimal place
- The diagrams are not drawn to scale.
- Calculate the sides and angles indicated. 1.

3 cm c cm

Answers:

Unit 6:1b Right-Angled Trigonometry – Tangent Ratio

2.

Answers: