\qquad Date \qquad

Unit 6:1a Right-Angled Trigonometry - Tangent Ratio

1
a) Complete the table by measuring the angle \hat{A} and the lengths $A B$ and $B C$ in each of the right-angled triangles below. For each angle, calculate the tangent ratio by dividing BC by AB . Round these answers to 1 decimal place.

${\text { Angle } A^{\circ}}^{\circ}$	10	20	30	40	50	60	70	80
$\mathbf{A B}(\mathrm{~mm})$								
$\mathbf{B C}(\mathrm{mm})$								
$\tan A^{\circ}=\frac{\mathbf{B C}}{\mathrm{AB}}$								

\qquad Date \qquad

Unit 6:1a Right-Angled Trigonometry - Tangent Ratio
b) What is the value of the tangent ratio for 45° ? Check by drawing a diagram.

Answer:
c) What is the value of the tangent ratio for 90° ? Try to explain why.

Answer:
d) Using your values in the table, draw a graph of the tangent function for the domain $0^{\circ} \leq x^{\circ} \leq 90^{\circ}$

e) Check the shape of the tangent function on your GDC.
\qquad Period \qquad Date \qquad

Unit 6:1b Right-Angled Trigonometry - Tangent Ratio

For all the questions in this exercise;

- If answers are not exact then round any lengths to 3 significant figures, and any angles to 1 decimal place
- The diagrams are not drawn to scale.

1. Calculate the sides and angles indicated.

Answers:
\qquad Period \qquad Date \qquad

Unit 6:1b Right-Angled Trigonometry - Tangent Ratio
2.

Answers:

