7:11a Integration - Substitution Rule

Basic Integration

Evaluate the following expressions.
a) $\int(\sin x) d x$
b) $\int\left(e^{x}\right) d x$ $=-\cos x+C$

$$
=e^{x}+C
$$

c) $\int\left(3 x^{2}+\frac{1}{x}\right) d x$
d) $\int\left(3 \frac{1}{\cos ^{2} x}\right) d x$
$=x^{3}+\ln x+C$
$=3 \tan x+C$

7:11b Integration - Substitution Rule

Consider the following ...

Differentiate $y=\sqrt{ }\left(x^{2}+1\right)$.

$$
\begin{aligned}
\frac{d}{d x} \sqrt{x^{2}+1} & =\frac{d}{d x}\left(x^{2}+1\right)^{\frac{1}{2}} \\
& =\frac{1}{2}\left(x^{2}+1\right)^{-\frac{1}{2}}(2 x) \\
& =x\left(x^{2}+1\right)^{-\frac{1}{2}}
\end{aligned}
$$

Thus, the anti-derivative of $y=x\left(x^{2}+1\right)^{-1 / 2}$ is

$$
\int x\left(x^{2}+1\right)^{-\frac{1}{2}}=\sqrt{x^{2}+1}+C
$$

7:11c Integration - Substitution Rule

Substitution Rule

What we are interested in doing now is how to "undo" the chain rule differentiation rule.

We know that $\frac{d}{d x} F(g(x))=F^{\prime}(g(x)) \cdot g^{\prime}(x)$
Chain Rule
Then, $\int\left[F^{\prime}(g(x)) \cdot g^{\prime}(x)\right] d x=F(g(x))+C$
Undoing the chain rule.

7:11d Integration - Substitution Rule

 Instead of using $g(x)$, let us substitute $u=g(x)$.$$
\begin{gathered}
\text { If } u=g(x), g^{\prime}(x)=\frac{d u}{d x} \\
\text { Then } \int\left[F^{\prime}(g(x)) \cdot g^{\prime}(x)\right] d x=F(g(x))+C \\
\text { Becomes } \int\left[F^{\prime}(u) \frac{d u}{d x}\right] d x=F(u)+C \\
\int\left[F^{\prime}(u) d u\right]=F(u)+C
\end{gathered}
$$

7:11e Integration - Substitution Rule

Example 1

$$
\text { Evaluate } \int\left[\left(x^{3}+3\right)^{4}\left(3 x^{2}\right)\right] d x
$$

We need to find a $g(x)$ such that we can substitute

$$
g(x)=u \text { and } g^{\prime}(x)=\frac{d u}{d x} .
$$

We see that if $u=x^{3}+3$ then $\frac{d u}{d x}=3 x^{2}$

$$
\text { or } d u=3 x^{2} d x
$$

$$
\int[(\underbrace{\left.x^{3}+3\right)^{4}}_{\mathrm{u}} \underbrace{\left.3 x^{2}\right)}_{\mathrm{du}}] d x
$$

7:11f Integration - Substitution Rule

$$
\int[(\underbrace{x^{3}+3}_{\mathrm{u}})^{4} \underbrace{\left.\left(3 x^{2}\right)\right] d x}_{\mathrm{du}}
$$

The substitution yields $\int u^{4} d u$

$$
\int u^{4} d u=\frac{u^{5}}{5}+C
$$

Replacing $u=x^{3}+3$,

$$
\int\left[\left(x^{3}+3\right)^{4}\left(3 x^{2}\right)\right] d x=\frac{\left(x^{3}+3\right)^{5}}{5}+C
$$

