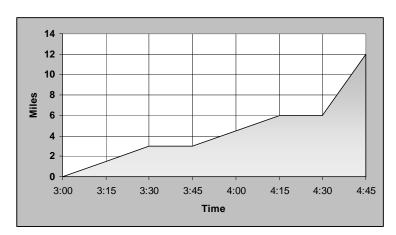
Exercise Set 6.2


In problems 1-3, first determine the midpoint of the segment connecting each pair of points. Then find the slope of a line that contains each pair of points.

1.	(12, -7) and (-6, 15)	Midpoint:		Slope:
2.	(-17, -8) and (-1, 11)	Midpoint:		Slope:
3.	(14, -7) and (-3, 18)	Midpoint:		Slope:
Answer the following.				
4.	One endpoint of a segment is is (3, 18). Find the coordinate			
5.	Parallelogram $ABCD$ has vertices $A(0, 0)$; $B(6, 0)$; $C(12, 8)$ and $D(6, 8)$. Find the coordinates of the midpoints of both diagonals.			
6.	Find the slopes of the diagonals of <i>ABCD</i> in problem 5.			
7.	Find the coordinates of two additional points that lie on the line passing through the points (0, 0) and (3, -4).			
8.	Find the midpoint of the segment with endpoints (-7, 20) and (15, -10). If the midpoint is <i>M</i> , and point <i>N</i> has coordinates (6, 8), find the slope of line <i>MN</i> .			
9.	A line through points (-5, 2) and (2, y) has a slope of 3. Find y.			
10	. Quadrilateral <i>FGHJ</i> has vert $H(14, 8)$ and $J(3, 8)$. Find th four sides.			
11	The graph to the right shows traveled by two inline skater Which inline skater is faster? faster?	s over time.	60 50 40 30 20 10 0 2.5 5	
			Seco	nus

Geometry © by Jeremy Kautza, published by TEACHINGpoint as part of the Expert Systems for Teachers[™] Series

Exercise Set 6.2

- 12. The graph to the right shows a dirt-bike rider's trip up and down Skidmore Hill.
 - a. What was the average speed going uphill?
 - b. What was the average speed going downhill?

- c. When did the rider start going back down?
- d. What was the rider doing at 3:30?
- 13. The grade of a road is its slope given as a percent. So, for example, a road with a 6% grade would have a slope of $^{6}/_{100}$. This means that it would rise 6 feet for every 100 feet of horizontal run. Answer the following questions:
 - a. If a road had a grade of 100%, what would that mean?

- b. Could you drive up a road with a grade of 100%?
- c. Is it possible for a grade to be greater than 100%?
- d. Visit http://www.dflt.org/awareness/steep.htm on the internet. What is the grade of typical stairs? What about a step ladder?
- 14. The slope of a roof is known as its *pitch*. A roof with a pitch of $\frac{6}{12}$ rises 6 feet for every 12 horizontal feet. Why might a roof in Michigan's Upper Peninsula have a higher pitch than one in the deserts of Arizona?