CALCULUS

Derivative of Natural Log and Exponential Functions
Given: $e \equiv \lim _{n \rightarrow 0}(1+n)^{\frac{1}{n}}$ and that the function $f(x)=\ln (x)$ is the continuous inverse of the function $g(x)=e^{x}$.
Thus \ln has all the properties known from PreCalculus.

Exponential Function
$y=e^{x}$
Domain $=\mathbb{R}$
Range $=\{y>0\}$
Continuous
$a^{n} \cdot a^{m}=a^{n+m}$
$a^{n} \div a^{m}=a^{n-m}$
$\left(a^{n}\right)^{m}=a^{n \cdot m}$

Logarithmic Function
$y=\ln (x) \quad \Longleftrightarrow \quad e^{y}=x$
Domain $=\{x>0\}$
Range $=\mathbb{R}$
Continuous
$\ln (A)+\ln (B)=\ln (A \cdot B)$
$\ln (A)-\ln (B)=\ln \left(\frac{A}{B}\right)$
$k \cdot \ln (A)=\ln \left(A^{k}\right)$

Derivative of $\ln x$

$$
\begin{aligned}
\frac{d}{d x} \ln x & =\lim _{h \rightarrow 0} \frac{\ln (x+h)-\ln (x)}{h} \\
& =\lim _{h \rightarrow 0}\left[\frac{1}{h} \ln \left(\frac{x+h}{x}\right)\right] \\
& =\lim _{h \rightarrow 0}\left[\frac{1}{h} \ln \left(1+\frac{h}{x}\right)\right]
\end{aligned}
$$

Let $n=\frac{h}{x} \quad$ thus $h=n x$

$$
\begin{aligned}
\frac{d}{d x} \ln x & =\lim _{n \rightarrow 0}\left[\frac{1}{n x} \ln (1+n)\right] \\
& =\frac{1}{x} \lim _{n \rightarrow 0}\left[\ln (1+n)^{1 / n}\right] \\
& =\frac{1}{x} \ln \left[\lim _{n \rightarrow 0}(1+n)^{1 / n}\right] \\
& =\frac{1}{x} \ln (e) \\
& =\frac{1}{x}
\end{aligned}
$$

$$
\frac{d}{d x} \ln x=\frac{1}{x}
$$

Derivative of e^{x} :

$$
y=e^{x}
$$

$$
\begin{aligned}
\ln (y) & =x \quad \text { take the derivative implicitly } \\
\frac{1}{y} \cdot \frac{d y}{d x} & =1 \\
\frac{d y}{d x} & =y \\
\frac{d y}{d x} & =e^{x}
\end{aligned}
$$

Now to evaluate the derivative of a^{x} for other basis use the fact that $a=e^{\ln (a)}$ and apply the chain rule.

$$
\begin{aligned}
\frac{d}{d x} a^{x} & =\frac{d}{d x}\left(e^{\ln (a)}\right)^{x} \\
& =\frac{d}{d x}\left(e^{x \cdot \ln (a)}\right) \\
& =\left(e^{x \cdot \ln (a)}\right) \cdot \ln (a) \\
& =a^{x} \cdot \ln (a)
\end{aligned}
$$

$$
\frac{d}{d x} a^{x}=a^{x} \cdot \ln (a)
$$

