Print Name:

Period:

Date:

CALCULUS

Derivative of Natural Log and Exponential Functions

Given: $e \equiv \lim_{n \to 0} (1+n)^{\frac{1}{n}}$ and that the function $f(x) = \ln(x)$ is the continuous inverse of the function $g(x) = e^x$. Thus \ln has all the properties known from PreCalculus.

Exponential Function	Logarithmic Function
$y = e^x$	$y = \ln(x) \iff e^y = x$
$Domain = \mathbb{R}$	$Domain = \{x > 0\}$
Range = $\{y > 0\}$	$\text{Range} = \mathbb{R}$
Continuous	Continuous
$a^n \cdot a^m = a^{n+m}$	$\ln(A) + \ln(B) = \ln(A \cdot B)$
$a^n \div a^m = a^{n-m}$	$\ln(A) - \ln(B) = \ln\left(\frac{A}{B}\right)$
$\left \left(a^n \right)^m = a^{n \cdot m} \right.$	$k \cdot \ln(A) = \ln\left(A^k\right)$

Derivative of $\ln x$

$$\frac{d}{dx}\ln x = \lim_{h \to 0} \frac{\ln(x+h) - \ln(x)}{h}$$
$$= \lim_{h \to 0} \left[\frac{1}{h}\ln\left(\frac{x+h}{x}\right)\right]$$
$$= \lim_{h \to 0} \left[\frac{1}{h}\ln\left(1+\frac{h}{x}\right)\right]$$

Let
$$n = \frac{h}{x}$$
 thus $h = nx$

$$\frac{d}{dx}\ln x = \lim_{n \to 0} \left[\frac{1}{nx} \ln(1+n) \right]$$
$$= \frac{1}{x} \lim_{n \to 0} \left[\ln (1+n)^{1/n} \right]$$
$$= \frac{1}{x} \ln \left[\lim_{n \to 0} (1+n)^{1/n} \right]$$
$$= \frac{1}{x} \ln(e)$$
$$= \frac{1}{x}$$
$$\frac{d}{dx}\ln x = \frac{1}{x}$$

Derivative of e^x :

$$y = e^x$$
$$\ln(y) = x$$

$$f(y) = x$$
 take the derivative implicitly

$$\frac{1}{y} \cdot \frac{dy}{dx} = 1$$
$$\frac{dy}{dx} = y$$
$$\frac{dy}{dx} = e^x$$

Now to evaluate the derivative of a^x for other basis use the fact that $a = e^{\ln(a)}$ and apply the chain rule.

$$\frac{d}{dx}a^{x} = \frac{d}{dx}\left(e^{\ln(a)}\right)^{x}$$
$$= \frac{d}{dx}\left(e^{x\cdot\ln(a)}\right)$$
$$= \left(e^{x\cdot\ln(a)}\right)\cdot\ln(a)$$
$$= a^{x}\cdot\ln(a)$$
$$\frac{d}{dx}a^{x} = a^{x}\cdot\ln(a)$$