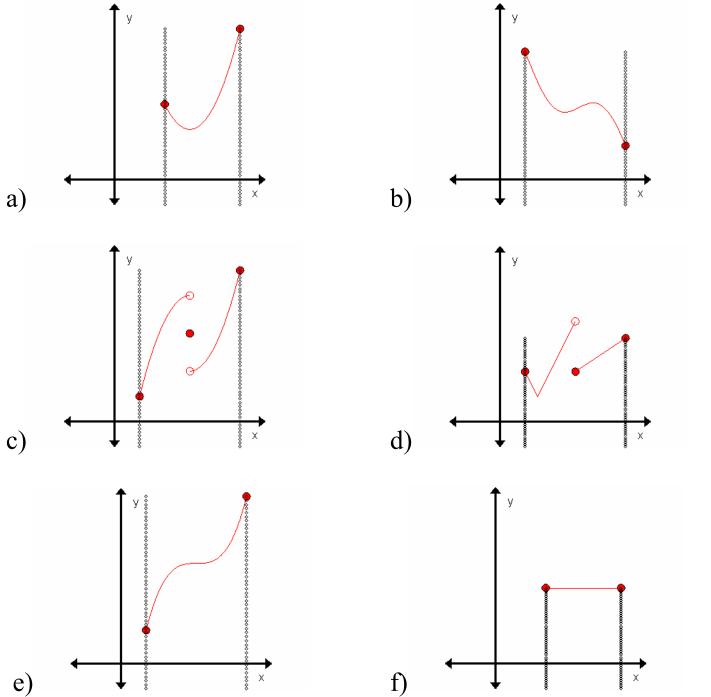
Unit 6:1A Extrema on an Interval

What is an extrema?

Describe the extrema on the following graphs on the indicated interval:



Calculus © by David McRae, published by TEACHINGpoint as part of Expert Systems for Teachers™ Series

6:1B

Definition of an extrema on an interval: A function f is said to have a maximum (minimum) on the interval I if there exist a number c in I, such that $f(c) \ge f(x)$ $(f(c) \le f(x))$ for all x in I.

<u>Terminology</u>: The maxima of a function in an interval [a,b] is the largest value that f(x) achieves. Thus the maximum is a "y" coordinate. We say that the maximum is achieved at a particular "x" coordinate (the *c* in the definition above).

What is the maximum? \rightarrow y coordinateWere the maximum? \rightarrow x coordinate

Examples:

- The function $y = x^2 + 1$ on the interval [-1,1] has a minimum value of 1 at x = 0 and a maximum value of 2 at x = -1 and x = 1.
- The function $y=x^2(x+4)-3$ on the interval (-4,2) has a
- minimum value of -3 at x = 0 and no maximum value.
- •

When does a function have an extrema on an interval [a,b]?

<u>Max/ Min Theorem</u>: If the function f is continuous on the closed interval [a,b], then both the maximum and minimum are achieved on the interval [a,b].

<u>Relative Extrema:</u> A function f is said to have a relative maximum (relative minimum) at c, if there exist an interval I containing c, such that $f(c) \ge f(x)$ $(f(c) \le f(x))$ for all x in I.

6:1C

<u>Global Extrema</u>: A value f(c) is said to be a global maximum (global minimum) if $f(c) \ge f(x)$ $(f(c) \le f(x))$ for all x in the domain of f.

Examples:

- The function $y = \sqrt{25 x^2}$ has a global minimum value of 0 at x = -5 and x = 5 and a global maximum value of 5 at x = 0.
- The function $y = \frac{1}{x^2 + 1}$ has no global minimum value and a global maximum value of 1 at x = 0.

<u>Critical Numbers</u>: A critical number of a function f is a value (x) in the domain of f, such that the derivative of f at x either does not exist or is equal to zero. A **critical point** is the coordinate (x, f(x)) where x is a critical number.

Extreme Theorem: (Critical Number Theorem) All relative extrema occur at critical numbers.

Note this only works in one direction (extrema \rightarrow critical number), but the converse is not always true (critical number $\not\rightarrow$ extrema).

Saddle Point (stationary point): A saddle point (or stationary point) of a function f is a coordinate (x, f(x)) on the graph of f, such f'(x) = 0 but the derivative is of the same sign on both sides of (x, f(x)). [Example: $y = x^3$ has a saddle point at (0,0) .3]

Finding extrema on closed interval:

- 1. Calculate $\frac{dy}{dx}$
- 2. Solve for when $\frac{dy}{dx} = 0$ or $\frac{dy}{dx}$ is undefined
- 3. Evaluate *y* at the values found above (at critical numbers) and at the endpoints.
- 4. The largest value above is the maximum, the smallest value above is the minimum.

Example: Find and identify the types of extrema of $g(x) = x^3 - 4x^2 + 4x - 2$ on the interval [-1,2.5]

$$g'(x) = 3x^2 - 8x + 4$$

= $(3x-2)(x-2)$ critical numbers: $x = \frac{2}{3}, 2$

$$g(-1) = -9$$

$$g\left(\frac{2}{3}\right) = \frac{32}{27} \cong 1.185$$
Thus $g(x)$ has a maximum value of $\frac{32}{27}$ at $x = \frac{2}{3}$,
 $g(2) = 0$
and a minimum value of -9 at $x = -1$.
 $g(2.5) = \frac{5}{8} = 0.625$

Example: Find and identify the types of extrema of $h(x) = x^{\frac{2}{3}}$ on the interval [-1,8]. $h'(x) = \frac{2}{3}x^{-\frac{1}{3}}$ is undefined at x = 0. Since h(-1) = 1, h(0) = 0, and h(8) = 4; on the interval [-1,8], h has a minimum of 0 at x = 0, and a maximum of 4 at x = 8.