## Unit 6:1A Extrema on an Interval

## What is an extrema?

Describe the extrema on the following graphs on the indicated interval:
a)

b)

c)

d)

e)

f)


## 6:1B

Definition of an extrema on an interval: A function $f$ is said to have a maximum (minimum) on the interval $I$ if there exist a number $c$ in $I$, such that $f(c) \geq f(x) \quad(f(c) \leq f(x))$ for all $x$ in $I$.

Terminology: The maxima of a function in an interval $[a, b]$ is the largest value that $f(x)$ achieves. Thus the maximum is a " $y$ " coordinate. We say that the maximum is achieved at a particular " $x$ " coordinate (the $c$ in the definition above).
What is the maximum? $\rightarrow y$ coordinate
Were the maximum? $\rightarrow x$ coordinate

## Examples:

- The function $y=x^{2}+1$ on the interval $[-1,1]$ has a minimum value of 1 at $x=0$ and a maximum value of 2 at $x=-1$ and $x=1$.
- The function $y=x^{2}(x+4)-3$ on the interval $(-4,2)$ has a
- minimum value of -3 at $x=0$ and no maximum value.

When does a function have an extrema on an interval [a,b]?

Max/ Min Theorem: If the function $f$ is continuous on the closed interval $[a, b]$, then both the maximum and minimum are achieved on the interval $[a, b]$.

Relative Extrema: A function $f$ is said to have a relative maximum (relative minimum) at $c$, if there exist an interval $I$ containing $c$, such that $f(c) \geq f(x) \quad(f(c) \leq f(x))$ for all $x$ in $I$.

## 6:1C

Global Extrema: A value $f(c)$ is said to be a global maximum (global minimum) if $f(c) \geq f(x) \quad(f(c) \leq f(x))$ for all $x$ in the domain of $f$.

## Examples:

- The function $y=\sqrt{25-x^{2}}$ has a global minimum value of 0 at $x=-5$ and $x=5$ and a global maximum value of 5 at $x=0$.
- The function $y=\frac{1}{x^{2}+1}$ has no global minimum value and a global maximum value of 1 at $x=0$.

Critical Numbers: A critical number of a function $f$ is a value ( $x$ ) in the domain of $f$, such that the derivative of $f$ at $x$ either does not exist or is equal to zero. A critical point is the coordinate $(x, f(x))$ where x is a critical number.

## Extreme Theorem: (Critical Number Theorem)

 All relative extrema occur at critical numbers.Note this only works in one direction (extrema $\rightarrow$ critical number), but the converse is not always true (critical number $\nrightarrow$ extrema).

Saddle Point (stationary point): A saddle point (or stationary point) of a function $f$ is a coordinate $(x, f(x))$ on the graph of $f$, such $f^{\prime}(x)=0$ but the derivative is of the same sign on both sides of $(x, f(x))$. [Example: $y=x^{3}$ has a saddle point at $(0,0) .3$ ]

## 6:1D

Finding extrema on closed interval:

1. Calculate $\frac{d y}{d x}$
2. Solve for when $\frac{d y}{d x}=0$ or $\frac{d y}{d x}$ is undefined
3. Evaluate $y$ at the values found above (at critical numbers) and at the endpoints.
4. The largest value above is the maximum, the smallest value above is the minimum.

Example:
Find and identify the types of extrema of $g(x)=x^{3}-4 x^{2}+4 x-2$ on the interval $[-1,2.5]$
$\begin{aligned} g^{\prime}(x) & =3 x^{2}-8 x+4 \\ & =(3 x-2)(x-2)\end{aligned} \quad$ critical numbers: $x=\frac{2}{3}, 2$
$g(-1)=-9$
$g\left(\frac{2}{3}\right)=\frac{32}{27} \cong 1.185$
Thus $g(x)$ has a maximum value of $\frac{32}{27}$ at $x=\frac{2}{3}$,
$g(2)=0$
and a minimum value of -9 at $x=-1$.
$g(2.5)=\frac{5}{8}=0.625$
Example: Find and identify the types of extrema of $h(x)=x^{2 / 3}$ on the interval $[-1,8]$.
$h^{\prime}(x)=\frac{2}{3} x^{-1 / 8}$ is undefined at $x=0$. Since $h(-1)=1, h(0)=0$, and $h(8)=4$; on the interval $[-1,8], h$ has a minimum of 0 at $x=0$, and a maximum of 4 at $x=8$.

