Unit 5:1A Introduction to Implicit Derivative

Leibniz Notation:

$$\frac{df}{dx} = \frac{df}{du} \cdot \frac{du}{dx}$$

Chain Rule:

Let
$$y = ()^3$$
, then $\frac{dy}{dx} = 3()^2 \frac{d}{dx}()$.

$$y = (\cos(x))^3$$
, then $\frac{dy}{dx} = 3(\cos(x))^2 \frac{d}{dx}(\cos(x))$.

$$y = (u)^3$$
, then $\frac{dy}{dx} = 3(u)^2 \frac{d}{dx}(u)$.

The examples above are defined explicitly.

In a sense we took the $\frac{d}{dx}$ of both sides of the equation.

5: 1B

Example: Let $y = \frac{1}{x}$, then $\frac{dy}{dx} = \frac{d}{dx}x^{-1} = -x^{-2} = -\frac{1}{x^2}$.

 $y \cdot x = 1$, this is called an *implicit* relationship.

The derivative $\frac{dy}{dx}$, can be found by differentiating both sides of the implicit relationship.

$$\frac{d}{dx}(y \cdot x) = \frac{d}{dx}(1),$$
$$\frac{d}{dx}(y) \cdot x + y\frac{d}{dx}(x) = 0,$$
$$\frac{dy}{dx}x + y = 0$$
$$\frac{dy}{dx} = -\frac{y}{x}$$

Since $y = \frac{1}{x}$, the two results for $\frac{dy}{dx}$, are equivalent. $-\frac{1}{x^2} = -\frac{y}{x}$

5: 1C

Vertical: When is the tangent line to the curve $y \cdot x + 3x^2 = 408$ vertical?

 $\frac{dy}{dx} \cdot x + y \cdot 1 + 6y \frac{dy}{dx} = 0$ $\frac{dy}{dx} = -\frac{y}{x + 6y}$

Slope of tangent line is vertical when x = -6ySubstitute back into original equation: $y(-6y) + 3(-6y)^2 = 408$ $-6y^2 + 108y^2 = 408$ $102y^2 = 408$ $y^2 = 4$ $y = \pm 2$ Points of vertical tangency occur at (12,-2) and (12,2).

Horizontal: When is the tangent line to the curve $y \cdot x + 3x^2 = 408$, horizontal?

Slope of tangent line is $\frac{dy}{dx} = -\frac{y}{x+6y}$ and thus horizontal when y=0

Substitute back into original equation:

$$0 \cdot x + 3x^2 = 408$$
$$x^2 = 136$$
$$x = \pm \sqrt{136}$$

Points of horizontal tangency occur at $(\sqrt{136},0)$ and $-(\sqrt{136},0)$.