7.1 Definition of Polynomials

Degree - of a variable in a $7 x^{2} y$ has monomial, the number of degree 2 for x times the variable occurs degree 1 for y as a factor in the monomial.
Monomial - a constant, .3, $x, 4 y,-t z$ variable, or a product of a constant and one or more variables.

7.1 Definition of Polynomials

Polynomial - a monomial $3 x^{2} y$ or a sum of monomials. The monomials are called the terms of the polynomial.
Similar monomials - $\quad 5 x y$ and $-2 x y$
(aka: like terms) are identical in their variables and degree, only different in coefficients.

7:1 Definition of Polynomials

When you add or subtract polynomials, you add or subtract the coefficients of terms with the same degree, or like terms.
Example 1.* $(3 \mathrm{x}+5 \mathrm{x})=(3+5) \mathrm{x}=8 \mathrm{x}$

$$
\begin{gathered}
*\left(6 x^{2}+5 x+2\right)+\left(3 x^{2}+2 x+5\right) \\
(6+3) x^{2}+(5+2) x+(2+5) \\
9 x^{2}+7 x+7
\end{gathered}
$$

7:1 Definition of Polynomials

Example 2:* $(x+7)-(3 x+2)$

$$
\begin{aligned}
& x+7-3 x-2=(1-3) \mathrm{x}+(7-2) \\
& -2 \mathrm{x}-5 \\
& *\left(-6 x^{2}+10 x-3\right)-\left(4 x^{2}-7 x\right) \\
& \quad(-6+4) x^{2}+(10-7) x-3 \\
& \quad-10 x^{2}+3 x-3
\end{aligned}
$$

7:1 Definition of Polynomials

To multiply two binomials (polynomials with two terms) mentally...FOIL method.

The FOIL method is an acronym to help you remember to multiply two binomials by including each term. The letters of FOIL represent " First Outside - Inside - Last", or the order in which to multiply using the distributive property. Let's see an example of what this involves:

7:1 Definition of Polynomials

Example 3: Multiply $(3 x+2)(2 x+1)$

$3 x(2 x$	$+1)$	$+2(2 x$	$+1)$
$(3 x)(2 x)$	$+(3 x)(1)$	$+(2)(2 x)$	$+(2)(1)$
$=6 x$	$+3 x$	$+4 x$	+2
Product of	Product of	Product of	Product of
First terms	Outer terms	Inner terms	Last terms

Final answer: $6 x^{2}+7 x+2$

7:1 Definition of Polynomials

To multiply two polynomials that have more than two terms, multiply each term of one polynomial with each term of the other polynomial. You may multiply vertically or horizontally. See the example below:

7:1 Definition of Polynomials

Example 4: Multiply $(3 x+2)$ with $(2 x+1)$.
Vertical format $3 x+2$
$\underline{2 x+1}$
$3 \mathrm{x}+2 \quad 1(3 \mathrm{x}+2)$
$2 x(3 x+2)$
$6 \mathrm{x}^{2}+7 \mathrm{x}^{6 x^{2}+4 x} \quad$ Product simplified
Horizontal format $(3 x+2)(2 x+1)$

$$
=3 x(2 x+1)+2(2 x+1)
$$

$=6 \mathrm{x}^{2}+4 \mathrm{x}+3 \mathrm{x}+2=6 x^{2}+7 x+2$ Final product

7:3 Graphs of Polynomial Functions

A polynomial function looks like this...

$$
f(x)=3 x^{3}+2 x^{2}+x+1
$$

The coefficients are not equal to zero.
We have discussed how to graph polynomials of degree 0,1 , and 2 .

function	degree	graph
$f(x)=3$	0	horizontal line
$f(x)=2 x+1$	1	straight line
$f(x)=2 x^{2}+3 x+1$	2	parabola

7:3 Graphs of Polynomial Functions

Points to remember about graphs of polynomial functions

- The graph of a polynomial of degree n, may cross the x -axis at most n times.
The curves of a polynomial function are usually smooth and continuous.
- If the leading coefficient of the function is greater than zero, the graph will rise to the right, otherwise, when the coefficient is less than zero, the graph will fall to the right.

