6:1 Exponential Functions

Example 2: Using horizontal shifts to sketch graphs.
Sketch the graph of the function:
$h(x)=(3)^{x+3}$
Solution: To sketch $\mathrm{h}(\mathrm{x})$, shift $h(x)=3^{x}$ three units left.

6:1 Exponential Functions

Example 3: Using Reflection and Shifts Sketch the graph of $h(x)=-\left(\frac{1}{3}\right)^{x}+3$
Solution: To sketch $\mathrm{h}(\mathrm{x})$, reflect the graph of $f(x)=\left(\frac{1}{3}\right)^{x}$ in the x-axis, then shift upward 3 units

6:1 Exponential Functions

Example 4:Evaluate powers that have rational and irrational exponents.
Use a calculator to evaluate the power:

Rational

Irrational
a.
b. $\quad 3^{-\pi}$

Solutions: Using a scientific calculator:
$3 \longdiv { y ^ { x } } (2 \div 3) \square 2 . 0 8 0 0 8$
Using a graphing calculator:
$3 \wedge(2 \div 3)$ enter 2.08008

6.3 Logarithmic Functions

We studied $3^{2}=9$ and $3^{3}=27$. How could you find what value of x would give you a solution to $3^{x}=12$? In the notation of logarithms, if $3^{x}=12$ then $\mathrm{X}=2.26$.
See the example: $3^{2}=9$
$\log (3)^{2}=\log 9$
$2 \log (3)=\log 9$
$2=\frac{\log 9}{\log 3}$

6:3 Logarithmic Functions

Example 1: Rewriting Exponential and Logarithmic Equations
Logarithmic form Exponential Form
a. $4=\log _{3} 81$
$81=3^{4}$
b. $y=\log _{5} x$
$x=5^{y}$
C. $5=\log _{a} 4$
$a^{5}=4$
d. $-3=\log _{e} b$
$e^{-3}=b$
e. $\log _{3} 5=c$
$3^{c}=5$
a. 4 log 81

Algebra 2 © by Sheila Cohen, published by

