| N 1  | <b>D</b> · · |      |
|------|--------------|------|
| Name | Period       | Date |

## 8:1 Solving Quadratic Equations by Finding Square Roots

# **QUADRATIC EQUATIONS AND PARABOLAS**

In this chapter, you will study:

- Solving Quadratic Equations by Finding Square Roots
- Graphs of Quadratic Equations: Parabolas
- Solving Quadratic Equations by Completing the Square
- The Quadratic Formula
- Imaginary and Complex Numbers
- Solving any Quadratic Equation

A <u>quadratic equation</u> is one that can be written as  $ax^2 + bx + c = 0$ , which is known as the <u>standard form</u> of the equation where *a*, *b*, and *c* are real numbers and  $a \neq 0$ . (*a* is the *leading* coefficient – the number associated with the quadratic term).

From Algebra 1, you should remember that positive real numbers have two square roots,  $\sqrt{b}$  and  $-\sqrt{b}$ , the positive and the negative, which are sometimes designated by the sign  $\pm\sqrt{b}$ . Recall that square roots are indicated by the <u>radical</u> symbol,  $\sqrt{}$ , and the number under the radical sign is called the <u>radicand</u>.

### 8:1 Solving Quadratic Equations by Finding Square Roots

| Finding the <i>nth</i> root of <i>b</i>                                                                                                                                                                                                                                                                          |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| An <i>nth</i> root of <i>b</i> is a solution of the equation $x^n = b$ .                                                                                                                                                                                                                                         |
| a. If <i>n</i> is even and <i>b&gt;0</i> , there are two roots of <i>b</i> .<br>The <u>principal</u> (or positive) <i>nth</i> root of <i>b</i> is denoted $\sqrt[n]{b}$ .<br>The <u>other</u> root of <i>b</i> is denoted $-\sqrt[n]{b}$ .                                                                       |
| b. If <i>n</i> is even and $b=0$ , there is one <i>nth</i> root: $\sqrt[n]{0} = 0$ .<br>c. If <i>n</i> is even and $b<0$ , there is <u>no real</u> <i>nth</i> root of <i>b</i> .<br>If <i>n</i> is odd, there is exactly one real <i>nth</i> root of <i>b</i> , whether <i>b</i> is positive, negative, or zero. |
|                                                                                                                                                                                                                                                                                                                  |

Solving a Quadratic Equation Example 1:

Solve:

| a. | $x^2 = 9$ | b. | $5x^2 = 15$ |
|----|-----------|----|-------------|
|    |           |    |             |

Solution:

 $x^2 = 9$  $5x^2 = 15$ b. a.  $x = \pm \sqrt{9} = \pm 3$  $x^2 = 3$  $x = \pm \sqrt{3}$ The roots are 3 and -3The roots are  $\sqrt{3}$  and  $-\sqrt{3}$ 

| Name | Period | Date |
|------|--------|------|
|      |        |      |

#### 8:1 Solving Quadratic Equations by Finding Square Roots

A <u>cube</u> root of a number is a solution of the equation  $x^3 = b$ . Every number *b*, whether positive, negative, or zero has exactly one real cube root, denoted  $\sqrt[3]{b}$ . The cube root of a positive number is positive and the cube root of a negative number is negative.

Example 2. Simplify.

a. 
$$\sqrt[3]{8}$$
 b.  $\sqrt[3]{-27}$  c.  $\sqrt[3]{10^6}$ 

Solution:

| a. $\sqrt{8} = 2$ because $2 = 3$ | a. | 3√8 | = 2 because | $2^3 = 8$ |  |
|-----------------------------------|----|-----|-------------|-----------|--|
|-----------------------------------|----|-----|-------------|-----------|--|

b.  $\sqrt[3]{-27} = -3$  because  $(-3)^3 = -27$ 

c. 
$$\sqrt[3]{10^6} = 10^2 = 100$$
 because  $(10^2)^3 = 10^6$ 

Example 3. Simplify.

a.  $\sqrt{81}$  b.  $\sqrt[3]{27}$  c.  $\sqrt[5]{-32}$  d.  $\sqrt[4]{-1}$ 

Solution:

a. 
$$\sqrt{81} = \pm 9$$
 since  $9^2 = 81$  and  $(-9)^2 = 81$ 

b. 
$$\sqrt[3]{27} = 3$$
 since  $3^3 = 27$ 

c. 
$$\sqrt[5]{-32} = -2$$
 since  $(-2)^5 = -32$ 

d. 
$$\sqrt[4]{-1}$$
 = no solution. There is no real number raised to the 4<sup>th</sup> power equal to -1.

### 8:1 Solving Quadratic Equations by Finding Square Roots

The symbol  $\sqrt[n]{b}$  is called a <u>radical</u>. Each part of the radical has a name. See below:



When there is no number for an index, it is understood that it is a square root. It is customary <u>not</u> to write the 2 in the radical sign.

| Properties of Radicals                                       | Examples                           |
|--------------------------------------------------------------|------------------------------------|
| 1. $\left(\sqrt[n]{b}\right)^n = b$ because $\sqrt[n]{b}$    | $\left(\sqrt{5}\right)^2 = 5$      |
| satisfies $x^n = b$                                          | $(2\sqrt{3})^3$                    |
|                                                              | $\left(\sqrt[3]{-5}\right)^3 = -5$ |
| 2. $\sqrt[n]{b^n} = b$ if n is odd                           | $\sqrt[3]{6^3} = 6$                |
|                                                              | $\sqrt[5]{x^5} = x$                |
| 3. $\sqrt[n]{b^n} =  b $ if n is even, because the principal | $\sqrt{(-5)^2} =  -5  = 5$         |
| nth root is always non-negative for even                     |                                    |
| values of <i>n</i> .                                         | $\sqrt{\left(x-2\right)^2} =$      |
|                                                              | x-2  =                             |
|                                                              | x - 2, x > 1                       |
|                                                              | 2 - x, x < 1                       |