\qquad
\qquad
\qquad

8:1 Solving Quadratic Equations by Finding Square

Roots

QUADRATIC EQUATIONS AND PARABOLAS

In this chapter, you will study:

- \quad Solving Quadratic Equations by Finding Square Roots
- Graphs of Quadratic Equations: Parabolas
- Solving Quadratic Equations by Completing the Square
- The Quadratic Formula
- Imaginary and Complex Numbers
- Solving any Quadratic Equation

A quadratic equation is one that can be written as $a x^{2}+b x+c=0$, which is known as the standard form of the equation where a, b, and c are real numbers and $a \neq 0$. (a is the leading coefficient - the number associated with the quadratic term).

From Algebra 1, you should remember that positive real numbers have two square roots, \sqrt{b} and $-\sqrt{b}$, the positive and the negative, which are sometimes designated by the sign $\pm \sqrt{b}$. Recall that square roots are indicated by the radical symbol, $\sqrt{ }$, and the number under the radical sign is called the radicand.
\qquad Period \qquad Date \qquad

8:1 Solving Quadratic Equations by Finding Square Roots

Finding the nth root of b

1. An $n t h$ root of b is a solution of the equation $x^{n}=b$.
2. a. If n is even and $b>0$, there are two roots of b. The principal (or positive) nth root of b is denoted $\sqrt[n]{b}$. The other root of b is denoted $-\sqrt[n]{b}$.
b. If n is even and $b=0$, there is one $n t h$ root: $\sqrt[n]{0}=0$.
c. If n is even and $b<0$, there is no real nth root of b.
3. If n is odd, there is exactly one real nth root of b, whether b is positive, negative, or zero.

Example 1: Solving a Quadratic Equation

Solve:
a. $\quad x^{2}=9$
b. $\quad 5 x^{2}=15$

Solution:

$$
\begin{array}{ll}
\text { a. } & x^{2}=9 \\
& x= \pm \sqrt{9}= \pm 3
\end{array}
$$

The roots are 3 and -3
b. $\quad 5 x^{2}=15$
$x^{2}=3$
$x= \pm \sqrt{3}$
The roots are $\sqrt{3}$ and $-\sqrt{3}$
\qquad
\qquad Date \qquad

8:1 Solving Quadratic Equations by Finding Square Roots

A cube root of a number is a solution of the equation $x^{3}=b$. Every number b, whether positive, negative, or zero has exactly one real cube root, denoted $\sqrt[3]{b}$. The cube root of a positive number is positive and the cube root of a negative number is negative.

Example 2. Simplify.
a. $\quad \sqrt[3]{8}$
b. $\quad \sqrt[3]{-27}$
c. $\quad \sqrt[3]{10^{6}}$

Solution:
a. $\quad \sqrt[3]{8}=2$ because $2^{3}=8$
b. $\quad \sqrt[3]{-27}=-3$ because $(-3)^{3}=-27$
c. $\quad \sqrt[3]{10^{6}}=10^{2}=100$ because $\left(10^{2}\right)^{3}=10^{6}$

Example 3. Simplify.
a. $\quad \sqrt{81}$
b. $\quad \sqrt[3]{27}$
c. $\quad \sqrt[5]{-32}$
d. $\quad \sqrt[4]{-1}$

Solution:
a. $\quad \sqrt{81}= \pm 9$ since $9^{2}=81$ and $(-9)^{2}=81$
b. $\quad \sqrt[3]{27}=3$ since $3^{3}=27$
c. $\sqrt[5]{-32}=-2$ since $(-2)^{5}=-32$
d. $\quad \sqrt[4]{-1}=$ no solution. There is no real number raised to the $4^{\text {th }}$ power equal to -1 .
\qquad
\qquad Date \qquad

8:1 Solving Quadratic Equations by Finding Square Roots

The symbol $\sqrt[n]{b}$ is called a radical. Each part of the radical has a name. See below:

When there is no number for an index, it is understood that it is a square root. It is customary not to write the 2 in the radical sign.

Properties of Radicals	Examples
1. $(\sqrt[n]{b})^{n}=b$ because $\sqrt[n]{b}$	$(\sqrt{5})^{2}=5$
satisfies $x^{n}=b$	$(\sqrt[3]{-5})^{3}=-5$
2. $\sqrt[n]{b^{n}}=b$ if n is odd	$\sqrt[3]{6^{3}}=6$
	$\sqrt[5]{x^{5}}=x$
3. $\sqrt[n]{b^{n}}=\|b\|$ if n is even, because the principal	$\sqrt{(-5)^{2}}=\|-5\|=5$
$n t h$ root is always non-negative for even	
values of n.	$\sqrt{(x-2)^{2}}=$
	$\|x-2\|=$
	$x-2, x>1$
	$2-x, x<1$

